Antimirov and Mosses's Rewrite System Revisited
نویسندگان
چکیده
Antimirov and Mosses proposed a rewrite system for deciding the equivalence of two (extended) regular expressions. They argued that this method could lead to a better average-case algorithm than those based on the comparison of the equivalent minimal deterministic finite automata. In this paper we present a functional approach to that method, prove its correctness, and give some experimental comparative results. Besides an improved functional version of Antimirov and Mosses’s algorithm, we present an alternative one using partial derivatives. Our preliminary results lead to the conclusion that, indeed, these methods are feasible and, most of the time, faster than the classical methods.
منابع مشابه
Testing the Equivalence of Regular Languages 1
The minimal deterministic finite automaton is generally used to determine regular languages equality. Using Brzozowski’s notion of derivative, Antimirov and Mosses proposed a rewrite system for deciding regular expressions equivalence of which Almeida et al. presented an improved variant. Hopcroft and Karp proposed an almost linear algorithm for testing the equivalence of two deterministic fini...
متن کاملTesting the Equivalence of Regular Languages
The minimal deterministic finite automaton is generally used to determine regular languages equality. Antimirov and Mosses proposed a rewrite system for deciding regular expressions equivalence of which Almeida et al. presented an improved variant. Hopcroft and Karp proposed an almost linear algorithm for testing the equivalence of two deterministic finite automata that avoids minimisation. In ...
متن کاملLeftmost Outermost Revisited
We present an elementary proof of the classical result that the leftmost outermost strategy is normalizing for left-normal orthogonal rewrite systems. Our proof is local and extends to hyper-normalization and weakly orthogonal systems. Based on the new proof, we study basic normalization, i.e., we study normalization if the set of considered starting terms is restricted to basic terms. This all...
متن کاملRational Term Rewriting Revisited: Decidability and Confluence
We consider a variant of rational term rewriting as first introduced by Corradini et al., i.e., we consider rewriting of (infinite) terms with a finite number of different subterms. Motivated by computability theory, we show a number of decidability results related to the rewrite relation and prove an effective version of a confluence theorem for orthogonal systems.
متن کاملTransformations of Conditional Rewrite Systems Revisited
We revisit known transformations of conditional rewrite systems to unconditional ones in a systematic way. We present a unified framework for describing, analyzing and classifying such transformations, discuss the major problems arising, and finally present a new transformation which has some advantages as compared to the approach of [6]. The key feature of our new approach (for left-linear con...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Int. J. Found. Comput. Sci.
دوره 20 شماره
صفحات -
تاریخ انتشار 2008